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INTRODUCTION AND SYNOPSIS

The study of flexural wave propagation in gun tubes continues to be inter-

esting and pertinent to the goals of this laboratory. As reported in Reference

1, the steady-state theory of flexural waves predicts circumferential strains in

excellent agreement with measured values as long as the projectile velocities

are very close to critical. At subcritical velocities, however, the agreement

is not quite as good and it was this observation that motivated the work

reported herein. As a brief review, the general appearance of this steady

deformation for two different velocities of the moving ballistic pressure is

shown in Figures la and lb. (The ordinates in all figures except Figure 3 are

normalized with respect to the static value as calculated under the Lam6 con-

ditions, i.e., the deformation of the wall of an infinitely long and uniform

cylinder exposed to a constant internal pressure.) The dramatic increase in

maximum strain as the velocity approaches critical is evident in Figure lb. A

comparison of measured strains with the predicted values from the steady-state

theory (Figure 2) nevertheless shows the predicted values to be too low except

when the velocity is nearly critical. Since the measured strains are greater

than the predicted values at projectile velocities considerably less than criti-

cal, such strains are not only of concern in the latest generation gun tubes,

but also in conventional tubes in which critical projectile velocities are gen-

erally not attained. This report addresses one possible cause of these strains.

ABAQUS (ref 2) results by A. Gabriele (ref 3) gave the first hint that the

steady-state theory of flexural waves, successful in predict ig the dramatic

1T. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-,R-8'7008,
Benet Laboratories, Watervliet, NY, July 1987.

2"ABAQUS Finite Element Code," Version 4.5(a), Hibbitt, Karlsson, and Sorenson,
Inc., 1985.

3A. Gabriele, Private Communication, U.S. Army ARDEC, Benet Laboratories,
Watervliet, NY, October 1988.
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Figure 1. Radial displacement of the wall of a uniform tube of infinite
length at two different pressure velocities, 120-mm XM25.

2



. A ........ A 4...§...

0 I I I I

0.4 0.5 0.6 0.7 0.3 0.9 1 1.1 1.2

V/Vcr
Figure 2. Comparison of maximum measured strains with those predicted

by the steady-state theory, 120-mm XM25.

increase of tube strains at projectile velocities near critical, may neverthe-

less predict strain values which are too low. The ABAQUS strains at some loca-

tions along the tube at projectile passage were significantly higher as were the

measured values. Non-uniformities in the tube wall thickness in the axial

direction were included in these finite element models as well as the variable

ballistic pressure and the velocity with which this pressure travels along the

tube. This is in contrast to the continuum model in Reference I which assumes a

constant pressure moving at constant velocity in an infinite tube of uniform

wall thickness. The degree to which variability in each of these quantities

plays a part in creating the higher strains from the ABAQUS model and those

measured along the real tube will be a goal for some time to come. Mowever, the

work reported herein moved forward on the premise that a major effect of these

variabilities is the production of transient vibrations or waves which, together

with the steady solution established in Reference 1, will help explain the

1T. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.
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higher strain values. For example, intuition tells us that as the moving

ballistic pressure suddenly encounters an abrupt change in the tube's cross-

sectional area, a transient vibration will be produced--an effect clearly beyond

the scope of Reference 1, but certain to occur in the ABAQUS models. Just how

abrupt this change in area must be to excite a significant transient is a matter

for future study. One might also suspect that the sudden rise of the ballistic

pressure following ignition and/or its acceleration along the tube might

generate transients.

Although the ABAQUS models without question mirror the actual gun tube in

most respects, there is one feature present in the ABAQUS models that in general

does not mimic the actual gun tube. Because of the impracticality of modeling

the entire tube, these ABAQUS models typically consider only a segment of the

tube--usually one which ends at the muzzle. Since this segmert of the tube is,

by necessity, considered a free body--completely disconnected from the remainder

of the tube--an unrealistic entrance condition is created. That is, in the

ABAQUS models, the moving pressure suddenly appears at the entrance of an

undisturbed tube, a condition not present in the real tube. It is apparent that

this excites an additional transient vibration in the model not present in the

actual gun tube. In this report, the contribution of this entrance transient to

the overall predicted deformation of the tube is shown to be significant.

As things turned out, the presence of the artificial entrance condition in

the ABAQUS models was fortuitous because of the ease with which this transient

could be studied. The final outcome was a firm understanding of how transients

in general act to increase tube strains. As previously mentioned, there are

several processes during the firing of an actual gun tube which are likely to

IT. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.
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produce transients, some of which are represented in the ABAQUS models. The

general understanding achieved through the study of the entrance transient tells

us qualitatively what to expect in the way of strain increases within the tube.

ABAQUS RESULTS

Non-Uniform Wall, Variable Pressure and Velocity

The main item of engineering interest in the ABAQUS results is the maximum

strain experienced at each axial location during the time that the pressure

moves from entrance to exit. A portion of a typical plot of these maximum

strains as obtained by Gabriele i. shown in Figure 3.

DYNAMIC AND LAME HOOP STRAINS 0 0 D FOR XM256
VARYING SPEED, PRESSURE FOR M829 ROUND 0 70F

4500 -

4000

3500

3000 0

2500

- DYNAMIC STRAIN
- LANK STRAIN AXIAL LOCATION

Figure 3. Maximum circumferential strain prior to shot ejection - XM256.

ABAQUS (Gabriele).

Uniform Wall, Constant Pressure and Velocity

A prominent characteristic in Figure 3 is the wavelike appearance of the

maximum strain distribution. To more easily investigate the cause of this

2000 5



waviness, a new A3AQUS model was requested. In this model, the pressure and

velocity were constant and the tube wall had uniform thickness. Figures 4a and

4b show typical distributions of maximum strains for this model resulting from

pressures moving at two different velocities as computed by ABAQUS.

-_ - .4_ 35 ii.I-~zri~i~
i 3

2 . -

0 5 10 15 20 25 30 ,35 40 45 50 55 60 65 79 7,5 Of 85

axial location Oin.)

Figure 4a. Velocity of moving pressure :4550 ft/sec.

45

'4

2.5

1.5 --- --."- - --- " * ' - - -.

4 5 19 15 29 25 39 35 49 45 59 55 60 65 79 75 36 85

axial location (in.)

Figure 4b. Velocity of moving pressure = 4818 ft/sec.

Figure 4. Maximum circumferential strain prior to shot ejection for
two different pressure velocities. ABAQUS (Gabriele).
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The wavelike character in these figures is very pronounced and constitutes

the main difference between these ABAQUS strains and those calculated from the

steady-state deformation caused by the same moving pressure in an infinite tube.

It is also observed that the wave attentuates with distance along the tube and

has a longer wavelength at the nigher velocity. In comparing the strain levels

of Figure 4 with those predicted by the steady-state theory, it is found that

the latter are in excellent agreement with the average of the former, i.e., the

essential difference between the two appears to be a decaying periodic function.

The cause of the wavelike variation in the maximum ABAQUS strains evidently

has little to do with variable velocity, pressure, or wall thickness since this

variation appears even when these are made constant. Other than the finiteness

of the tube length itself, the only other possible causes for this variation are

the entrance transient mentioned previously or perhaps other non-steady motions

which arise due to the motion of the pressure. It is shown in this report,

however, that no unsteady motions other than the entrance transient are present.

A SIMPLIFIED MODEL FOR SYMBOLIC SOLUTION

At this point in the investigation, ABAQUS or other strictly numerical

methods of solution provided no further insight. What was needed was a solution

in symbolic or analytical form from which qualitative information might be

obtained. For this purpose, a further simplification was made to the model. By

assum ,.g that the wall of the tube is very thin, the problem can be formulated

as a simplo .-undary value problem in dynamics which can be solved either by

Fourier - ,iorms or by Fourier series. The advantage of either of these

methods is i- the transient term(s) and the steady-state terms appear as

separate 3.,alytical expressions. The interaction of these terms can then be

explored.

7



The simplest equation governing the axisymmetric motion of a thin-walled

cylindrical shell subjected to a step function of pressure moving at constant

velocity can be written as follows (ref 1):

a'w Eh w
axW + Eh + ph 2 = Q(1-H(x-Vpt)) (la)

where Q is a constant and represents the magnitude of the moving pressure and H

is the Heaviside step function:

H(x-Vpt) = 0 x < VPt

= 1 x > VPt

In this equation, w is the radial displacement of the median surface of the

cylindrical shell located at a distance R from the central axis; h is the shell

thickness and is assumed to be small compared to R; p is the mass density of the

shell material; D = Eh3/12(1-u2); E is Young's modulus of elasticity; v is

Poisson's ratio; and Vp is the velocity of the moving pressure, assumed to be

constant. With a different interpretation of the coefficients, Eq. (ia) is

equivalent to the equation governing the motion of a Bernoulli-Euler beam on an

elastic foundation, and accordingly, shear deformation and rotatory inertia are

ignored.

As in the ABAQUS models, the tube is at rest initially and the radial

displacement is constrained to be zero at each end, i.e.,

w(x,O) = w(x,O) = 0 (Ib)

w(O,t) = w(L,t) = w"(O,t) = w"(L,t) = 0 (1c)

1T. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.
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As previously mentioned, either Fourier series or Fourier transforms can be used

with advantage. Fourier series happens to be the first way the author

approached the problem and has the advantage that the individual terms of the

resulting solution are more directly analogous to those of the familiar single-

degree of freedom system. However, a complete interpretation of these results

requires at least a partial use of Fourier transforms. On the other hand,

exclusive use of the Fourier transform method, with the help of an asymptotic

approximation, provides a closed-form symbolic solution. Both solutions are

given in this report.

Prior to solving the system (Eq. (1)), it is worth reviewing the meanings

of the terms 'steady-state' and 'transient' as they arise in connection with a

simple problem involving a single-degree of freedom. Therefore, consider the

following problem:

Equation of motion:

U + W2u = fo cos(Wft) + f1 t (2a)

Initial conditions:

u(O) = u0  , u(O) = uO (2b)

Solution:

u = u0 cos(wt) + - sin(wt) - 1j sin(wt)

-fo fo f
- f cos(Wt) + ---- f--cos(Wft) + t (2c)

The first two terms of this solution represent the motion in existence at

t = 0 and have the natural frequency of the system. The third and fourth terms

also have the natural frequency of the system, but are associated with the

applied forces. These four terms are the well-known 'transients' of the solu-

tion, so named because they die out if damping is present. The remaining terms

9



comprise the steady-state solution, so named because they do not die out if

damping is present. The reason for including the force f1 t as well as the more

traditional harmonic force is simply to show that unless f, a 0, there is

nothing 'steady' about the steady-state solution. Thus, the word 'steady' can-

not always be taken literally. Having made this observation, we henceforth let

fl 0 0, whereupon the solution becomes simply

U0 fo fou0= O cos(c(t) + -- sin(wt) W + - cos(wft) (2d)------) --- (A) 2 - csf f wt - Wf2

Now physically, we know that for arbitrary initial conditions the system cannot

assume a steady-state response instantaneously. There must be a transition

motion which takes it from its initial state (uo,Uo) to the steady state. The

third transient in the solution (Eq. (2d)) accomplishes this. One might there-

fore refer to this term as a 'transition transient.' Similarly, the deformation

resulting from a moving pressure suddenly entering a tube cannot start out as

steady state, but must also have a 'transition transient' present in its solu-

tion as well as transients representative of the initial conditions.

Solution (2d) above also shows that the transition transient, in the

absence of damping, periodically interferes with the deformation represented by

the steady-state solution (beats) and, like the steady solution, becomes

unbounded as the forcing frequency approaches the natural frequency of the

system. Similar, but not identical, results are shown for the problem of the

tube subjected to a moving pressure.

Finally, it is worth remembering that each transient constitutes a possible

free motion of the system. This viewpoint will prove useful in studying the

problem of interest since the analysis of freely propagating disturbances is

well developed.

10



SOLUTION BY FOURIER SERIES

One way to arrive at a Fourier series solution to Eq. (1) is to use the

sinusoidal vibrational mode shapes as basis functions in the Galerkin procedure.

Thus, a solution of the following form is assumed:

w(x,t) = *j(t) sin(jnx/L) (3)

j=1

By inspection, it is clear that this solution will satisfy the boundary con-

ditions (Eq. (1c)) and that the initial conditions (Eq. (1b)) require that

0j(0) = ;j(0) = 0

It remains only to determine the time variant coefficients *j(t). To do this,

Eq. (la) is multiplied by the arbitrary variation 6w = ftj sin(jnx/L) and

integrated over the interval (O,L). Using the boundary conditions and the usual

orthogonality condition

fL (7TX)0sin

f L sin(--)sin(j =)dx 0 i 0 J
0 LL L/2 i = j

results finally in the expression

~ .~D(!!', *Eh +2 L =r31 (0jD~j)4j + Oj+ p%4*.j- f I0 (-H(X-Vpt))sin(j )dxj = 0

j=1

Since each 60j is arbitrary and independent, each term of this series must

vanish with the result

a 2Q jrVnt
j +p j ph= - (1-cos(--E -)) * Fj(t) j = 1,2,....m (4)

where

a = a27r' Eh L)4
Pi (J*f) ; a2  D/ph ; R (L)

1l



The Duhamel form of solution to Eq. (4) is

tFj(T)
Oj(t) f t -P -- sin(pj (t-T))dT

which results in

Oj(t) = ----- bJ {bzjZ(cos(pjt)) - p(cos(jbt)) + p - b~jz} (5)
Pj (p j-b j)

where

fj = 2Q/jphT ; b = 7Vp/L

The 0j's from Eq. (5) are then substituted into the assumed solution (Eq.

(3)) to arrive at the final series solution for the displacement of the tube

wall in space and time. Figure 5 is a plot of the tube shape at the instant

when the load reaches mid-tube. The coefficients of the shell equation (Eq.

(la)) for this illustration correspond to a 120-mm tube of uniform wall

2 - V =.966ycr

21

" 1

-
.-

1O 20 I0 4 50 60
distance along tube - in.

Figure 5. Radial displacement of tube wall when pressure has travelled
50 percent of the tube length--by Fourier series.
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thickness and a length of 60 inches. Tube properties are typical of the 120-mm

XM25, as reported in Reference 1, i.e.,

h = 0.508 in. E = 30.3 e6 lb/in. 2

R = 2.616 in. v = 0.3

p = 0.0007365 slugs/in. 3  Q = Eh/R 2

Choosing Q = Eh/R 2 effectively normalizes the displacement with respect to the

static deformation under Lam6 conditions. The velocity of the moving pressure

was arbitrarily chosen to be 96.6 percent of the critical value.

The superiority of the Fourier series solution, Eq. (5), to one achieved

using finite basis functions (finite elements, finite differences, etc.) is that

it allows the transient terms to be easily distinguished from the steady-state

solution just as in (Eq. (2d)). Note that since the initial conditions are

zero, the only the remaining transient in the solution expression for the Oj is

the transition transient (the term in cos(pit)). This is the transition tran-

sient part of the solution for the *j(t). The transition transient part of the

solution for the displacement w(x,t) is then formed by multiplying this term by

sin(jirx/L) and summing. Now the question can be asked: If one ignores the tran-

sient in Eq. (5), will the remaining terms (when multiplied by sin(jnx/L) and

summed) yield a solution which looks anything like the steady solution for an

infinite tube? The answer is shown in Figure 6a. A comparison with the

corresponding steady deformation of a tube of infinite length (Figure 6b) shows

that except near the ends of the tube, the solutions will be virtually the same.

(As the velocity of the moving pressure approaches the critical value, however,

the influence of the boundary extends farther into the tube.)

1T. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.
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It can therefore be concluded that in regions of the tube not too close to

the ends, the complete solution to the problem consists of the sum of the steady

solution corresponding to a moving pressure in a tube of infinite length and the

transition transient resulting from the sudden entrance of pressure. No other

motions are generated y the moving pressure. (This is probably a consequence

of the constant velocity of the moving pressure.)

2

V=.966Vc.

-

0 IQ 20 30 40 50 60

distance aIong tube - in.

Figure 6a. Fourier solution for the deformation of a tube

of finite length neglecting transient term.

2.0

1.0 V:.966Vcr

'IC

U

0.0

I I I

0 15 30 45 60

distance along tube - inches

Figure 6b. Steady-state deformation of a tube of infinite length.
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Comparing Figures 5 and 6, the effect of the transient at the instant the

load reaches mid-length is to increase the maximum wall displacement (and there-

fore the circumferential stress and strain) by about 17 percent beyond that pre-

dicted by the steady-state solution in Figure 6b. This is not necessarily the

time at which the largest displacement will appear, however, and it is apparent

that it is the interaction between the steady solution and the transition tran-

sient which needs to be understood. For this purpose the transition transient

is viewed as a free, unforced motion of the tube wall because the analysis of

freely propagating disturbances is well developed. This motion will result, for

example, from certain initial conditions imposed on a tube in the absence of any

pressure. Thus, one can consider the following problem of free vibration:

a'w Eh a~w
d.e. D p + h w + h 22 = 0 (6a)

b.c. w(O,t) = w(L,t) = w"(O,t) = w"(L,t) = 0 (6b)

i.c. w(x,O) = 2 Oj(O) sin(jirx/L), (x,O) = 0 (6c)

j=1

where

Oj(O) = b2j2fj/p j(p-bj2) ; *j(O) = 0

Solution:

w(x,t) = *Pj(O) cos(pjt)sin(j7rx/L) (7)

i=j

which is, by intent, the transition transient of the corresponding forced motion

solution (Eq. (5)). This transient is shown in Figures 7a and 7b for two dif-

ferent times. The effect of dispersion is evident because the deformation modu-

lates in wavelength along the tube.

15



.5 V = .9 66 V,

.4- V=.966Vcr

0 .0

-. 4

0 to 20 30 40 50 s0
distance along tube - in.

Figure 7a. The transition transient when the pressure has travelled 25 percent

of the tube length--by Fourier Series.

.4 V=. 966 Ver

. .2

.0

.2

-. 4

II III

0 t1 20 30 40 50 60

distance along tube - in.
Figure 7b. The transition transient when the pressure has travelled 50 percent

of the tube length--by Fourier Series.

Now the primary concern is to learn how this transition signal interacts

with the steady solution to periodically increase and decrease the deformation

as in Figure 4. It would be very helpful, therefore, if a closed-form solution

(symbolic) could be achieved instead of Eq. (7). For this purpose, some results

16



achieved by the use of Fourier transforms are most suitable. The transformed

solution to the problem defined by Eq. (6) is easy to obtain, but to-arrive at

the actual displacement of interest, this expression must be inverted.

Unfortunately, the required inverse can only be obtained numerically which is of

no help in understanding the result. Fortunately, however, an asymptotic eval-

uation of the inverse is possible and the result is very informative. The

method used to obtain this asymptotic evaluation is the method of stationary

phase (ref 4) which shows that if a function h(k) has a stationary value at the

point k = ko, then the following integral can be evaluated asymptotically (as t

becomes infinite):

y(t) = fb D(k)e ith(k)dk (8)

a

Asymptotic evaluation by stationary phase gives

y(t) = 4(ko) 2 exp (-ih(ko)t - 27 sgn h"(ko)) (9)

That is, the main contribution to the integral (Eq. (8)) is from the neigh-

borhood of k = kO . Otherwise the contributions oscillate rapidly and make

little net contribution.

For the problem specified by Eq. (7) above, the solution by Fourier

transforms can be written (ref 5):

w(x,t) = - Im{f' 0(k)exp(i(kx+W(k)t)]dk +

00

f 0 0(k)exp[i(kx-W(k)t)]dk} (10)

4 Karl F. Graff, Wave Motion in Elastic Solids, Ohio State University Press,

1975, pp. 65-66.
5G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York,

1974, p. 373.
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where w = W(k) is the so-called dispersion relation expressing the circular fre-

quency w as a function of the wave number, k. W(k) characterizes the system

properties, while the initial conditions (Eq. (6c)) are represented in 0(k).

For the system represented by Eqs. (6a) through (6c)

0(k) = / 2 fw(xO)sin(kx)dx (11)
0

and from Reference 1

Eh/R2 + Dk' 12
W(k) =(12)

Putnick (ref 6) has shown that the first term of Eq. (10) contributes

nothing since there is no value of k > 0 for which the exponent is stationary.

Applying Eq. (8) to the second term

h(k) = kx/t - W(k) (13)

In order for h(k) to be stationary at k0

h'(ko) = x/t - W'(k O ) = 0 (14)

or

W'(ko) = x/t

However, W'(ko) is simply the group velocity (ref 7) associated with the wave

number kO . Finally, the solution to the system represented by Eq. (7), provided

t is large enough, is

w(x,t) = - f(k0 ) t( sin(W(ko)t - kox + n/4) (15)

IT. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.

6L. Putnick, Private Communication, U.S. Army ARDEC, Benet Laboratories,

Watervliet, NY, October 1988.
7G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974,

p. 10.
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Equation (15) is the asymptotic evaluation of the transition t:ansient in

closed form and is loaded with information. Basically this stationary-phase

result states that the dominant part of the disturbance that arrives at a par-

ticular point x at time t will have travelled with a group velocity x/t and will

consist of the dominant wave number k0 determined from Eq. (14).

For example, if an observer travels at some constant velocity (say VO),

then at the location x = Vot the observer will perceive the transition tran-

sient as a single wave (and hence a single frequency) at all times. This fre-

quency and wave number correspond to a wave whose group velocity is VO . Now

suppose V0 = Vp, the velocity of the moving pressure and hence the translational

velocity of the steady deformation. As Figure 1 shows, the maximum of this

steady deformation is located a short distance behind the pressure front. If

this distance is d, the transition transient at this location will effectively

consist of a single wave with group velocity V p - d/t. Since t has been

assumed large, d is small compared with Vpt and the group velocity will be very

nearly Vp. The quantity d/t will henceforth be neglected.

It has been shown that at the location of the maximum steady-state defor-

mation, the transient consists of a signal having one and only one frequency and

wave number. The total interaction between the steady signal and the transient

signal is therefore simple harmonic with an amplitude given by Eq. (15) which

decays as t- 6. At the location of the maximum steady-state solution, x = Vpt,

and thus there will be a spatially decaying periodic var'ation in the maximum

total deformation along the tube. The wavelength of this variation is easily

obtained from Eq. (15) by substituting t = x/Vp and examining the argument of

the oscillatory term, i.e.,

W(k0 )
sin(W(ko)t - kox + 7/4) t=x/Vp = sin[((--- ko)x + n/4]
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Therefore, the wavelength of this function is

A =- 2r (16a)W0k)/V p - k0

Since the frequency W(k) is related to the phase velocity v(k)

v(k) = W(k)/k

Equation (16a) can be written

A = -(16b)
v(k0 )ko(----- 1)
p

where v(ko) is the phase velocity of a wave whose group velocity is Vp.

To use the asymptotic evaluation (Eq. (15)) or either of the above

expressions for A, it is necessary to determine ko, the wave number

corresponding to a wave which has group velocity Vp. Thus,

/ 0
Vp = W'(ko) = 2kh03 (17)p / -ph(ko;+Eh/R2 D)

Equation (17) can be solved for ko(Vp). There is only one positive real

value of k0 for any real value of Vp which is

1/3

m3VP + 216D 2 y4 mV p2  vmVpZ 1 (mZVp+lO
8 D 2y')

--------------0--------------------------------
kO = U( 17280' 481(3)0D2

+M 2V 4 V- - --- -- --- -- --- -- --- -- C --- -- --- -- --- - 1--2D (18 )

m3VPG + 216D 2 y4mVp2  y2 mVp2V(m 2 Vp4 +1O8D2Y " )
14402( -- - - - - - - - -- - -- - - - - -- - - - -1728D3 48Y (-D2

where y4 = Eh/R 2D and m = ph. (Isn't MACSYMA nice?)
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SOLUTION BY FOURIER TRANSFORMS

In 1963 Sing-chih Tang (ref 8) solved the related problem of a moving

pressure in a semi-infinite tube through the use of Fourier transforms. Until

reflected waves from the muzzle begin to influence results, Tang's solution can

be used. The system solved by Tang was the same as Eqs. (la), (1b), the first

and third of Eq. (1c), and the condition that the radial displacement w(x,t)

remain bounded as x - o. Tang found that the radial displacement of the tube

wall in response to a moving pressure entering the tube at some constant veloc-

ity, Vp, is

W(X,T) = WI(X-VT) + W2 (X+VT) - i eI cos(XX)

-2OP f (1 1 ) KX§ qj i dK (19)
7r 0 Q2 02 -V2 K2  K

where

1 - kem [cos(n) * ----- sin(nt)] , 0
2mn

Wi(t) L

n2:-m2

4e -m[cos(n ) -- sin(nt)] , 0 0
2mn

P -mt 92 -in2
W2() = 2q e (cos(nt) 2mn sin(nt))

K = n + im is the root of the dispersion relation

K4 - V2 K2 + 62q2 = 0

Tang's variables (dimensionless) are related to those defined in the pre-

vious sections as follows:

USing-chih Tang, "Dynamic Response of a Thin-Walled Cylindrical Tube Under
Internal Moving Pressure," Doctoral Dissertation, University of Michigan, Ann
Arbor, MI, 1963, pp. 64-66.
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X = V-T x/h Vd2 = E/(1-V 2 )p V = Vp/vd

W =w/h q2 6h Q 2 = K4+q 2

12KG (R X2 q

T /1 Vdt/h (l-1 2 )KG 2= 2
E

P = p/12KG G E (20)2(1+v)

where K is the shear correction factor. From Reference 1, K2 = 0.86 when v =

0.3; vd is the speed of dilatational waves in a plate; K is the dimensionless

wave number (wave number * h/VT ); p is the magnitude of the moving pressure,

and V is the dimensionless load velocity. One immediate advantage of Tang's

solution is the explicit appearance of the steady-state solution shown in Figure

1. Except for W1 and the term containing the integral, the remaining terms in

Eq. (19) are needed to satisfy the boundary condition w(O,t) = 0 and have negli-

gible effects elsewhere provided the velocity of the moving pressure is not too

close to the critical value. The term containing the integral is the transition

transient. Thus, the two main terms in the solution in regions of the tube not

too close to the entrance are once again the steady-state solution corresponding

to a moving pressure in an infinite tube and the transition term.

Tang was not able to evaluate the integral in closed form and proceeded

with a numerical evaluation. This evaluation gave no further qualitative infor-

mation, however. In the following, the method of stationary phase is applied to

obtain an asymptotic evaluation of this integral. Substituting

cos(QT)sin(KX) = j Im {exp(i(KX+Q(K)T)] + exp[i(KX-Q(K)T)]l

IT. E. Simkins, "Resonance of Flexural Waves in Gun Tubes." ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.
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thus

-262P C
----- f F(K) cos(QT)sin(KX)dK =
7 0

- P Im{fj F(K)e ihl(K)TdK + I' F(K)eih2(K)TdKI

71 0 0

where

F(K) ----Q2--V---- , hl(K) = KX/T + 2(K) h2 (K) : KX/T - Q(K)
K 22 V Ki

The first integral contributes a negligible amount since hl(K) has no stationary

point in the region K > 0. By stationary phase

-6PIm F(K)ei(KX/T -Q(K))TdK

27t i 7

= -P Im(F(Ko) Iexp[-i(Ko)T 
+  iKoX - sgn "(Ko)]

F(KO)62P 2 sin(12(K 0)T - K0X + sgn "K)

From the expression for ±22 (Eq. (20))

9"(Ko) = 2Ko2(3q262+Ko4)/(q26Z+Ko4) 3 / 2 = 2Ko2 (Q2(K 0 )+2q
2 62)/Q(Ko)3 

> 0

Thus the asymptotic evaluation of the integral in Eq. (19) can finally be writ-

ten:

SO F(K) cos(52T)sin(KX)dK = F(Ko)62/ T,,(Ko) sin(Q(Ko)T - KoX + n/4) (21)

This result was also achieved independently by Flaherty and also by Putnick

(refs 9,6).

bL. Putnick, Private Communication, U.S. Army ARDEC, Benet Laboratories,

Watervliet, NY, October 1988.
9J. Flaherty, Private Communication, U.S. Army ARDEC, Benet Laboratories,
Watervliet, NY, October 1988.
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The dimensionless wavelength in this term, as seen by an observer trav-

elling with the dimensionless load velocity V, is obtained by substituting T =

X/V. The result is the dimensionless counterpart of Eq. (16a):

dimensionless wavelength =- -
12(K0 )--------KO )

VERIFICATION BY FINITE ELEMENTS

The foregoing analysis was based on Lne method of stationary phase which

gives a good approximation frr sufficiently large values of t (or x). While

there are means for cvaluating the error (ref 7), the arithmetic is not worth

the effort ;n this case and it is much more expedient to compare results with

those from finite element simulations. These simulations were programmed by M.

Leach (ref 10) of this laboratory. Since the thin shell Eq. (la) is identical

with the equation for a Bernoulli-Euler beam on an elastic foundation, the

ABAQUS beam element was used in the simulations. (Even though a beam element is

used, a cylindrical shell is the conceptual model.) Again, the ABAQUS model

reflected the XM25 properties as reported in Reference 1 and was composed of 500

elements. The overall length of Leach's model was 5 meters (196.85 inches)--

increased from the 60 inches used previously to allow for a greater number of

crests to be displayed in a plot of maximum strain along the tube. The model

again assumed uniform wall thickness and that the pressure moved with constant

velocity. Figure 8 shows the wavelike character of the maximum radial displace-

ment distribution along the tube computed by ABAQUS for a pressure velocity

IT. E. Simkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.

7G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974,
p. 10.

1 0M. Leach, Private Communication, U.S. Army ARDEC, Benet Laboratories,
Watervliet, NY, October 1988.
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equal to 85.9 percent of the critical value. Note also that the amplitude of

this wave attenuates with distance along the tube. No damping was included in

the ABAQUS model and this attentuation is due solely to the dispersion of the

transition transient.

Early comparisons of the wavelength visible in the ABAQUS maximum strain

plots, such as Figure 8, with that computed from the asymptotic evaluation (Eq.

(16)) differed by as much as 40 percent, depending on the number of time incre-

ments used in integrating the ABAQUS equations of motion. For example, direct

measurement of the distance from crest to crest in Figure 8 (500 time incre-

ments) gives a value of 37.5 inches, whereas Eqs. (16a) or (16b) predict only

25.96 inches. Doubling the number of time steps, however, gives a value of 26.4

inches, differing from the theoretical value by only 1.7 percent.

1.5

1.0
U

0.5

0.

0 50 100 150 200

distance along tube - in

Figure 8. Maximum circumferential strain prior to shot ejection.
ABAQUS (Leach).

A further example showing that the discrepancy tends to vanish as the

number of time steps is increased is given in Table I. This table shows how the

ABAQUS-computed wavelength converges toward a value of 10.97 inches as predicted

by Eqs. (16a) and (16b) when the pressure velocity is 72 percent of the critical

value.
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TABLE I. EFFECT OF NUMBER OF TIME STEPS ON A

Number of Time Steps Wavelength*
(Inches)

500 13.11

1000 11.51

2000 11.11

3000 11.00

4000 10.99

5000 10.98

*Axial distance between strain maxima.

Equation (16b) shows that as the load velocity (Vp) approaches the phase

velocity, the wavelength becomes infinite. Recalling that Vp is also -he group

velocity of wave number kO , this means that the phase and group velocities

become equal. This is the resonant condition (Vp = Vcr) reported in Reference

1. Thus, the maximum deformation will grow as the pressure moves along the

tube. The exact form of this growth must be determined from a solution valid

under this resonant condition and is beyond the scope of this report.

Leach has also used the ABAQUS model to generate successive time histories

of the deformation in the vicinity of the pressure front. A set of these is

shown in Figure 9 when the pressure front is in the vicinity of mid-tube. The

sinusoidal rise and fall of the maximum deformation is clearly visible. Figure

9b is simply a more dense version of 9a. By direct measurement, the amplitude

of this sine wave is 6.29 percent of the Lam6 displacement which is represented

TiT.E. imkins, "Resonance of Flexural Waves in Gun Tubes," ARCCB-TR-87008,
Benet Laboratories, Watervliet, NY, July 1987.
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by an ordinate of 1.0 in the figure. As a comparison, the stationary phase

evaluation (Eq. (21)) gives the same value. Thus, the agreement is excellent.

i i .... ,,

I~Jill, Jill

titime - msee

time - msc te t tran
Figure 9. Successive time histories of the (b)

timethe ressre font eaced md-tue. Oing o efottenation.o h

ABAQUJS (Leach).

As previously mentioned, Leach's model employed a tube length of 5 meters

in order to display several crests in his plots of maximum deformation versus

distance along the tube. Because of this, the portion of the transition tran-

sient interacting with the steady deformation travelled nearly 2.5 meters by the

time the pressure front reached mid-tube. Owing to the attenuation of the

signal with time (or distance), the amplitude of the interaction was con-

siderably less than it would have been had the distance travelled been less.

Figure 10 shows the effect of distance travelled on the amplitude of the inter-

ference from the transition transient. For example, for a tube length of 60

inches, the amplitude was 12.0 percent of the Lam6 displacement at the time the

pressure reached mid-tube. Shorter tube lengths may be even more represent-

ative.
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Figure 10. Effect of overall tube length on amplitude of transient deformation.
Velocity of moving pressure = 0.86 Vcr. Pressure at mid-tube.

Finally, the growth of the sinusoidal interference as the pressure velocity

approaches critical is shown in Figure 11 when the tube length was 60 inches.

Larger ordinate values would result for shorter tube lengths.

.35

- .25

C6

o~~ .15

0.8 0.85 0.9 0.95

Figure 11. Effect of velocity of moving pressure on amplitude of transient
deformation. Pressure at mid-tube. Tube length = 60 inches.
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SUMMARY

The solution to the forced motion problem investigated in this report has

been expressed as the sum of transient and steady-state motions. The transient

arises as a consequence of the sudden entrance of pressure at one end of a

cylinder initially undeformed and at rest--and constitutes a freely propagating

deformation at all subsequent times. From the Fourier point of view, this

freely propagating disturbance consists of a weighted sum of many wave trains

possible in the structure (consistent with any boundary conditions). Because of

dispersion, the weight of each individual wave train--and hence the deformation

itself--changes with time. However--and this is important--there will be loca-

tions and times at which a few of these wave trains are nearly in phase and all

of the others will be out of phase so that when the sum is performed, only these

few contribute to the sum. This is shown by the method of stationary phase.

Eventually these few reduce to just one so that the instantaneous deformation at

any point along the cylinder essentially consists of one and only one wave

train. An instant later the deformation at this point is described by a

different wave train. Each wave train moves on at its corresponding group

velocity. Thus, a projectile (i.e., a moving pressure front) moving at constant

velocity keeps up with the specific wave train whose group velocity is equal to

the projectile velocity. Generally, the phase velocity of this wave train is

different from its group velocity so that its crests and valleys continually

move relative to the projectile or pressure front, creating a simple harmonic

deformation at this location. There is one particular wave train, however, for

which the group velocity and phase velocity are equal. If the projectile is

travelling at this velocity, the transient deformation will appear stationary.

This is the so-called 'critical' velocity.
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From the previous paragraph, one can see that the transient analysis in

this report is quite general. It deals only with the free propagation of a

plane disturbance through a linear material. Even within the context of the

moving pressure problem, its essence has nothing to do with the axial symmetry

of the problem or the constant velocity of the moving pressure, or even with the

existence of the pressure itself except in providing definition to the par-

ticular disturbance being propagated. Thus, despite the specificity of the

application within this report, one can safely conclude the following:

1. A sudden disturbance to a gun tube generates a transient signal

which in sufficient time appears at the location of the moving projectile as

a single wave, i.e., a simple harmonic deformation of the tube wall. If the

location of the projectile with respect to the origin of the disturbance is

denoted as X, and if the time which has passed since the disturbance occurred is

T, then the group velocity of this single wave is X/T. This statement assumes

only that the deformation takes place in a single mode. If the tube and

pressure are perfectly axisymmetric, then the deformation is entirely axisym-

metric. The wave number or wavelength and the frequency of the single wave are

determined by the dispersion relation for this mode. It follows that one such

wave for each mode involved in the deformation will be produced if the

pressure or the geometry is asymmetric. If the projectile velocity is constant,

the wavelength and frequency of the wave in each mode will be constant, but the

amplitude will diminish with projectile travel. If the projectile velocity is

variable, then the wavelength and frequency of the wave will be variable also

and the amplitude of the wave will vary in a more general way, though in most

cases of a practical nature one would still expect it to decay with projectile

travel.
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2. The harmonic transient deformation of the gun tube experienced in the

vicinity of the projectile periodically adds to and subtracts from the steady

deformation caused by the moving ballistic pressure so that the deformation is

maximum at certain locations along the tube. Given sufficient time, these

locations become equally spaced along the tube if the projectile velocity is

constant. From the previous discussion, it is clear that the type of end con-

ditions assumed for the tube cannot influence the spatial or temporal periodic-

ity of this interaction, i.e., the wavelength of the interactions remains the

same regardless of changes in the boundary conditions.

3. Resonance. When the pressure enters and travels through the finite

tube at critical velocity, the transient deformation and the steady deformation

are both unbounded terms of the solution. In addition, there are other terms

normally important only near the ends of the tube which must be taken into

account. However, there is no doubt that the deformation, when all terms are

accounted for, must be bounded because of the finite tube length and the extent

to which its amplitude increases depends on the length of the tube involved.

The exact form of this growth is a subject for future work.
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